83 research outputs found

    Actinide collisions for QED and superheavy elements with the time-dependent Hartree-Fock theory and the Balian-V\'en\'eroni variational principle

    Get PDF
    Collisions of actinide nuclei form, during very short times of few zs (102110^{-21} s), the heaviest ensembles of interacting nucleons available on Earth. Such collisions are used to produce super-strong electric fields by the huge number of interacting protons to test spontaneous positron-electron pair emission (vacuum decay) predicted by the quantum electrodynamics (QED) theory. Multi-nucleon transfer in actinide collisions could also be used as an alternative way to fusion in order to produce neutron-rich heavy and superheavy elements thanks to inverse quasifission mechanisms. Actinide collisions are studied in a dynamical quantum microscopic approach. The three-dimensional time-dependent Hartree-Fock (TDHF) code {\textsc{tdhf3d}} is used with a full Skyrme energy density functional to investigate the time evolution of expectation values of one-body operators, such as fragment position and particle number. This code is also used to compute the dispersion of the particle numbers (e.g., widths of fragment mass and charge distributions) from TDHF transfer probabilities, on the one hand, and using the Balian-Veneroni variational principle, on the other hand. A first application to test QED is discussed. Collision times in 238^{238}U+238^{238}U are computed to determine the optimum energy for the observation of the vacuum decay. It is shown that the initial orientation strongly affects the collision times and reaction mechanism. The highest collision times predicted by TDHF in this reaction are of the order of 4\sim4 zs at a center of mass energy of 1200 MeV. According to modern calculations based on the Dirac equation, the collision times at Ecm>1E_{cm}>1 GeV are sufficient to allow spontaneous electron-positron pair emission from QED vacuum decay, in case of bare uranium ion collision. A second application of actinide collisions to produce neutron-rich transfermiums is discussed. A new inverse quasifission mechanism associated to a specific orientation of the nuclei is proposed to produce transfermium nuclei (Z>100Z>100) in the collision of prolate deformed actinides such as 232^{232}Th+250^{250}Cf. The collision of the tip of one nucleus with the side of the other results in a nucleon flux toward the latter. The probability distributions for transfermium production in such a collision are computed. The produced nuclei are more neutron-rich than those formed in fusion reactions, thus, leading to more stable isotopes closer to the predicted superheavy island of stability. In addition to mass and charge dispersion, the Balian-Veneroni variational principle is used to compute correlations between ZZ and NN distributions, which are zero in standard TDHF calculations.Comment: Proceeding of the FUSION11 conferenc

    A new inverse quasifission mechanism to produce neutron-rich transfermium nuclei

    Full text link
    Based on time-dependent Hartree-Fock theory, a new inverse quasifission mechanism is proposed to produce neutron-rich transfermium nuclei, in collision of prolate deformed actinides. Calculations show that collision of the tip of one nucleus with the side of the other results in a nucleon flux toward the latter. The role of nucleon evaporation and impact parameter, as well as the collision time are discussed.Comment: 8 pages, 7 figure

    Triangular rogue wave cascades

    No full text
    By numerically applying the recursive Darboux transformation technique, we study high-order rational solutions of the nonlinear Schrödinger equation that appear spatiotemporally as triangular arrays of Peregrine solitons. These can be considered as rogue wave cascades and complement previously discovered circular cluster forms. In this analysis, we reveal a general parametric restriction for their existence and investigate the interplay between cascade and cluster forms. As a result, we demonstrate how to generate many more hybrid rogue wave solutions, including semicircular clusters that resemble claws

    Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits

    No full text
    We present an explicit analytic form for the two-breather solution of the nonlinear Schrödinger equation with imaginary eigenvalues. It describes various nonlinear combinations of Akhmediev breathers and Kuznetsov-Ma solitons. The degenerate case, when the two eigenvalues coincide, is quite involved. The standard inverse scattering technique does not generally provide an answer to this scenario. We show here that the solution can still be found as a special limit of the general second-order expression and appears as a mixture of polynomials with trigonometric and hyperbolic functions. A further restriction of this particular case, where the two eigenvalues are equal to i, produces the second-order rogue wave with two free parameters considered as differential shifts. The illustrations reveal a precarious dependence of wave profile on the degenerate eigenvalues and differential shifts. Thus we establish a hierarchy of second-order solutions, revealing the interrelated nature of the general case, the rogue wave, and the degenerate breathers

    Classifying the hierarchy of nonlinear-Schrödinger-equation rogue-wave solutions

    No full text
    We present a systematic classification for higher-order rogue-wave solutions of the nonlinear Schrödinger equation, constructed as the nonlinear superposition of first-order breathers via the recursive Darboux transformation scheme. This hierarchy is subdivided into structures that exhibit varying degrees of radial symmetry, all arising from independent degrees of freedom associated with physical translations of component breathers. We reveal the general rules required to produce these fundamental patterns. Consequently, we are able to extrapolate the general shape for rogue-wave solutions beyond order 6, at which point accuracy limitations due to current standards of numerical generation become non-negligible. Furthermore, we indicate how a large set of irregular rogue-wave solutions can be produced by hybridizing these fundamental structures

    Microarcsecond Radio Imaging using Earth Orbit Synthesis

    Full text link
    The observed interstellar scintillation pattern of an intra-day variable radio source is influenced by its source structure. If the velocity of the interstellar medium responsible for the scattering is comparable to the earth's, the vector sum of these allows an observer to probe the scintillation pattern of a source in two dimensions and, in turn, to probe two-dimensional source structure on scales comparable to the angular scale of the scintillation pattern, typically 10μ\sim 10 \muas for weak scattering. We review the theory on the extraction of an ``image'' from the scintillation properties of a source, and show how earth's orbital motion changes a source's observed scintillation properties during the course of a year. The imaging process, which we call Earth Orbit Synthesis, requires measurements of the statistical properties of the scintillations at epochs spread throughout the course of a year.Comment: ApJ in press. 25 pages, 7 fig

    Rapid interstellar scintillation of PKS B1257-326: two-station pattern time delays and constraints on scattering and microarcsecond source structure

    Get PDF
    We report measurements of time delays of up to 8 minutes in the centimeter wavelength variability patterns of the intra-hour scintillating quasar PKS 1257-326 as observed between the VLA and the ATCA on three separate epochs. These time delays confirm interstellar scintillation as the mechanism responsible for the rapid variability, at the same time effectively ruling out the coexistence of intrinsic intra-hour variability in this source. The time delays are combined with measurements of the annual variation in variability timescale exhibited by this source to determine the characteristic length scale and anisotropy of the quasar's intensity scintillation pattern, as well as attempting to fit for the bulk velocity of the scattering plasma responsible for the scintillation. We find evidence for anisotropic scattering and highly elongated scintillation patterns at both 4.9 and 8.5 GHz, with an axial ratio > 10:1, extended in a northwest direction on the sky. The characteristic scale of the scintillation pattern along its minor axis is well determined, but the high anisotropy leads to degenerate solutions for the scintillation velocity. The decorrelation of the pattern over the baseline gives an estimate of the major axis length scale of the scintillation pattern. We derive an upper limit on the distance to the scattering plasma of no more than 10 pc.Comment: 27 pages, 6 figures, accepted for publication in Ap

    Angular Broadening of Intraday Variable AGN. II. Interstellar and Intergalactic Scattering

    Full text link
    We analyze a sample of 58 multi-wavelength, Very Long Baseline Array observations of active galactic nuclei (AGN) to determine their scattering properties. Approximately 75% of the sample consists of AGN that exhibit centimeter-wavelength intraday variability (interstellar scintillation) while the other 25% do not show intraday variability. We find that interstellar scattering is measurable for most of these AGN, and the typical broadening diameter is 2 mas at 1 GHz. We find that the scintillating AGN are typically at lower Galactic latitudes than the non-scintillating AGN, consistent with the scenario that intraday variability is a propagation effect from the Galactic interstellar medium. The magnitude of the inferred interstellar broadening measured toward the scintillating AGN, when scaled to higher frequencies, is comparable to the diameters inferred from analyses of the light curves for the more well-known intraday variable sources. However, we find no difference in the amount of scattering measured toward the scintillating versus non-scintillating AGN. A consistent picture is one in which the scintillation results from localized regions ("clumps") distributed throughout the Galactic disk, but which individually make little contribution to the angular broadening. Of the 58 AGN observed, 37 (64%) have measured redshifts. At best, a marginal trend is found for scintillating (non-scintillating) AGN to have smaller (larger) angular diameters at higher redshifts. We also use our observations to try to constrain the possibility of intergalactic scattering. While broadly consistent with the scenario of a highly turbulent intergalactic medium, our observations do not place significant constraints on its properties.Comment: 13 pages, 4 figures; AASTeX format; ApJ in pres
    corecore